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Abstract I
In this paper we describe syntactic closures. Syntactic closures

address the scoping problems that arise when writing macros. We -

discuss some issues raised by introducing syntactic closures into the
macro expansion interface, and we compare syntactic closures with
other approaches. Included is a complete implementation.
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1 The trouble with macros

Macros are an essential programming tool. Many programming languages
support them, including virtually all dialects of Lisp. The use of macros can
make programs easier to understand and maintain by allowing the program-
mer to extend the language with new constructs that suit his application.[3]

Macros are traditionally implemented using simple textual manipula-
tions. Some examples of familiar macros in a hypothetical dialect of Scheme
might be:

(define-macro (push obj-exp list-var)
'(set! ,list-var (cons ,obj-exp ,list-var)))

(define-macro (or exp-1 exp-2)
'(let ((temp ,exp-1))

(if temp temp ,exp-2)))

(define-macro (catch body-exp)
'(call-with-current-continuation

(lambda (throw) ,body-exp)))

0i In each of these examples, the formal parameters to the macro are bound
* - to source text, represented as S-expressions, and the body of the macro

computes a replacement text, also represented as an S-expression.
This style of macro facility is simple and general, but it is prone to

various kinds of scoping errors:

1. Variable references introduced by the macro can be inadvertently cap-
tured by lexical bindings in the client code. For example,

(let ((cons 5))
(push 'foo stack))

would expand into

(let ((cons 5))

(set! stack (cons 'foo stack)))

which is probably not what was intended. The client of push shouldn't
have to know that push is implemented using cons.

2. A client's lexical reference can conflict with a binding introduced by
the macro. For example,
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(or (memq x y) temp)

would expand into

(let ((temp (memq x y)))
(if temp temp temp))

which is even less likely to be what was intended. The client shouldn't
have to be aware of this detail of or's implementation.

3. Assuming that our hypothetical Scheme dialect also supports some

kind of with-macro construct for defining local macrob, Syhtactic key-
words introduced by the macro can be inadvertently captured. For
example,

(with-macro (set! flag)
'(set-flag! ',flag)

(push 'foo stack))

would expand into

(with-macro (set! flag)

'(set-flag! ',flag) .r'
(set! stack (cons 'foo stack))).

This is analogous to the first case above. In the first case we were bind-
ing identifiers, while in this case we are binding syntactic keywords.

4. An example similar to case 2, but involving keywords, is possible,
but never seems to happen in practice, so a good example is hard to
provide. Our best attempt is as follows:

(define-macro (contorted test x y)
'(with-macro (use and/or)

'(,and/or ,',x ,',y)
(if ,test

(use and)
(use or))))

The client ot contorted should n't have to be aware that the subexpres-

sions named by test, x, and y will be within Lbe scupe o[ contorted's
auxiliary kevword use.

2-
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All of these problems are consequences of the fact that macros are obliv-
ious to the lexical scoping of the program text that they are constructing.
Any macro facility that proposes to address this shortcoming also has to
take into account that sometimes the macro writer needs explicit control
over scoping. For example when

(catch (+ S (throw 'x)))

expands into

(call-with- current-continuation

(lambda (throw)
(+ 5 (throw 'x))))

the client's use of throw should refer to the binding of throw introduced
by the macro. This contrasts with case 2 above, where such capture was
undesirable. There is an analogous case for binding of syntactic keywords.

In this paper we will present a solution to these scoping problems. We
will also examine some of the related design issues, and discuss some re-
maining difficulties. In an appendix, we present a complete implementation
of our solution.

2 Terminology

We need to precisely distinguish between various different kinds of names rr,
and environments. The following terminology will be used throughout this
paper:

" A name is any token used to name something. Traditionally Lisp uses
symbols, such as quote and car, for this purpose.

" A keyword (or a syntactic keyword) is a name used to introduce some
special syntactic construct. Lambda and set! are familiar examples.

" An identifier is a name used to denote a variable. Familiar examples
are cdaadr and foo. -

" A variable is a particular binding of an identifier. For example, in

N,'

%,

,t'v3 ftft~ft..'

f.t-,



(lambda (x)

(f x
(lambda Wx

(g x))))

there are two variables named by the identifier x.

" A syntactic cnvironment maps identifiers to variables, and contains

an interpretation for a number of syntactic keywords. Syntactic envi-

ronments contain all of the contextual information necessary for inter-

preting the iieaning of a particular expression.

" A value environment maps variables to their values (or more precisely,

to locations t hat hold those values). Value environments contain the

additional information necessary to execute an expression.

3 Our solution

In the same way that closures of lambda-expressions solve scoping problems

at run time, we l)rop)ose to introduce slntactic closurcs as it way to solve

scoping p)roblems at macro expansion tiie. .a's "*'

3.1 Syntactic closures N.-

Like the closure returned by a lambda-expression, a syntactic closure con-

sists of an environment of some kind, a list of names, and an expression.

With both kinds of closures, all names occurring in the expression are taken
relative to the environment, except those in the given list. The names in

the list are to have their meanings determined later. In both cases a closure

is a way of parameterizing an expression.

The difference is that the lambda-expression closure is invoked with

positional arguments, while the syntactic closure is invoked in a "call-by-

context" fashion. Call-by-context is natural in a situation where expres-

sions are construc ted out. of ot hlr expressions; such con text-(le)erndeice is

the normal way expressions are coml)ined.

Svtactic closures are created by the procedure make-syntactic-

closure. It takes three arguments: a. syntactic environment, a list of names,
and an expression. It returns a closure of the expression in tIe environment,

leaving the names free. Expressions are represented in tHie usual way, as

ft
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S-expressions. A syntactic closure can be thought of as a new kind of S-
expression that does not have a printed representation. A syntactic closure
can appear as a subexpression of another expression. (It can even appear
as the left hand side of an assignment statement.)

Ordinarily, an expression inherits the meaning of the keywords and iden-
tifiers it contains from the context in which it appears, but a syntactic closure
carries its own context with it. This enables tools that manipulate expres-
sions to avoid identifier and keyword scoping problems while retaining the
ability to construct expressions in the familiar way.

3.2 Writing expanders

The programmer defines macros by writing procedures called expanders.
An expander is applied to a syntactic environment and an expression, and
returns a syntactic closure. The expression is the piece of program text that
is to be expanded, and the syntactic environment is derived from the context
in which the expression occurred. The resulting syntactic closure is to be
used in place of the original expression.

For example, here is the expander for the push macro:

(define (push-expander syntactic-env exp)

(let ((obj-exp (make-syntactic-closure
syntactic-env ')
(cadr exp)))

(list-var (make-syntactic-closure
syntactic-env '()

(caddr exp))))
(make-syntactic-closure
scheme-syntactic-environment '0
'(set! ,list-var (cons ,obj-exp ,list-var)))))

In a production implementation it would be unnecessary to write this
expander by hand. Since most expanders follow a common pattern, a conve-
nient user interface can hide the calls to make-syntactic-closure except
in cases where the programmer needs more precise control of syntactic en-
vironments. A front end can be designed that allows programmers to define
the push macro in a more familiar and readable way. We are not advocating
a user interface, but rather a set of tools suitable for constructing such user
interfaces. (We will have more to say about the design of such user interfaces
in the next section.)

5
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The pattern followed by most expanders is as follows:

1. The subexpressions of the input expression are closed in the syntactic
environment in which they occurred, that is, in the syntactic environ-
ment which was the argument to the expander. Note that these subex-
pressions might already be syntactic closures before they are passed
to make-syntactic-closure. This isn't a problem, as any expression
can be syntactically closed, even a syntactic closure that is already
context insensitive.

2. An expression is created (typically using backquote) that is the expan-
sion of the original expression. This expansion will include as subex-
pressions the syntactic closures created in step 1.

3. The expansion is then closed in a syntactic environment known to
the expander. In the example this is the standard Scheme syntactic
environment.

This avoids all capture problems by carefully closing each expression in
the syntactic environment appropriate to the names it contains. Thus, the
subexpressions of the input are closed in the environment of the input, and
any new names introduced by the expander are resolved in an environment
known to the expander.

In the push example, the programmer need not be concerned that the
definition of the keyword set! might be locally redefined ii the location
where the push-expression occurred, because he uses a known syntactic en-
vironment to close the set! expression he constructs, lie needn't worry
about any local rebindings of cons either, because the mapping of the iden-
tifier named "cons" found in scheme-syntactic-environment will be the
global variable named "cons", rather than any local variables that happen
to have the same name.

To illustrate how another kind of capture is avoided, here is a definition
of a simple version of or:

S.i
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(define (or-expander syntactic-env exp)
(let ((exp-I Cmake-syntactic-closure syntactic-env 10)

(cadr exp))
(exp-2 (make-syntactic-closure syntactic-env 'C)

(caddr exp)
(make-syntactic-closure
scheme-syntactic-environment 'C)
'((ambda (temp)

(if temp temp, exp-2))
,exp-1))))

As before, the programmer doesn't need to worry about local redefini-
tions of the keywords lambda and if, but notice that he doesn't have to
worry that his use of a variable named "temp" will accidentally capture any
variables of t!he same name in the second operand. This is because the sec-
ond operand is closed in the syntactic environment that was current where
the or-expression occurred, and thus any identifiers it may have contained
named "temp" have already been resolved to the correct variable named

4temp.

The second argument to make -syntact ic-closure is used in those sit-
uations where the programnmer wvants a capture to occur. It is a list of
names which are to be left syntactically free in the resulting expression. To
illustrate, here is an expander for catch:

(define (catch-expander syntactic-env exp)
(let ((ody-exp (make-syntactic-closure

syntactic-env '(throw)
(cadr exp))))

(make-syntactic-closure

scheme-syntactic-environment '0
'(call-with-current-continuation

(lambda (throw) body-exp)))))

Here the expression in the body of a catch is closed using the syntactic
environment current where the catch-expression occurred, with the name
"throw" excepted. Thus the meaning of all the names in the expression will
be correctly determined, with the nae "throw" left free to be captured by
the lambda-expression in which it is embedded.

d7
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4 Pragmatics

The process of macro expansion is overseen by a preprocessor whose nature
is not specified here: it could be a simple rewrite phase that precedes (or is
interleaved with) interpretation, or it could be integral to the front end of a
compiler. The preprocessor starts with an input expression-perhaps read
from a file or terminal-and some known syntactic environment. The envi-
ronment gives meaning to top level identifiers (such as car) and keywords
(such as if). Identifier bindings are added to the syntactic environment as
the preprocessor descends through lambda-expressions. Keyword bindings
are added by constructs like with-macro.

The traditional interface between expanders and the preprocessor is de-
fined only in terms of program text. We have augmented this interface by
introducing syntactic environments and closures. This raises a number of
design questions that have to be answered somehow in any practical imple-
mentation. For example: Can programmers create new syntactic environ-
ments, or add new keywords to existing syntactic environments? And are
there any operations on syntactic closures, such as extracting the original
expression, or detecting that it represents a call to the car procedure?

The previous section describes the general low-level mechanism by which
expanders communicate with the preprocessor. This section suggests a rudi-
mentary framework that might help support any practical implementation
of syntactic closures. We give an implementation of this framework in the
appendix.

4.1 Extend-syntactic-environment

It is useful to have a procedure that extends -t syntactic environment by
associating an expander with a given keyword. For example

(extend-syntactic-environment
scheme-syntactic-environment

'push

push-expander)

returns a new syntactic environment in which expressions of the form (push
are expanded by the expander push-expander. Any other expression

is interpreted according to scheme-syntactic-environment.

8z
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4.2 Advertised syntactic environments

We have already seen several examples in which a known syntactic envi-
ronment was needed. In particular, when an expander introduces a name
into an expansion, it needs to be certain that the name has the intended
meaning. For example, the expander for push requires that cons and set!
have the meanings documented in the Scheme manual. The expander for a
without-interrupts macro mighi wish to employ names that are defined
in an internal system syntactic environment.

Both Scheme and Common Lisp draw a distinction between primitive
keywords such as lambda and q,.te and derived keywords such as and
and case that can be expressed in terms of the primitive ones. Thus
the scheme-syntactic-environment itself might be constructed by adding
macro bindings to a core-syntactic-environment whose only keyword
bindings are those for the primitive keywords.

4.3 Macrologies

The scheme-syntactic-environment is a function of the core-syntac-
tic-environment. This function is itself a useful abstraction that can be
made available as a procedure. We call such functions from syntactic envi-
ronments to syntactic environments macrologies. A macrology is an abstrac-
tion that captures the process of defining one language in terms of another.

Given any syntactic environment that assigns meanings to the primi-
tive keywords, the scheme-macrology assigns meanings to all of the derived
keywords. A programmer who wanted to -xperiment with an alternate def-
inition of if could write

(define new-if-syntactic-environment

(scheme-macrology
(extend-syntactic-environment

core-syntactic-environment

'if
new-if-expander)))

to obtain a syntactic environment in which the derived keywords and, or,

and cond were all defined in terms of the new version of the primitive key-
word if.

It is common to design a facility that introduces a collection of related
syntactic extensions. Such a facility can be conveniently implemented as a

9
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macrology. For example, a stack-macrology might be written that extends
a given syntactic environment by adding push and pop macros.

4.4 Locally defined macros

Designing a user interface for a macro facility that uses syntactic closures
and environments raises a number of questions. While we don't intend to
advocate any particular front end, these issues must be addressed by any
such interface.

If keywords are subject to the same scoping rules as identifiers, it is
natural to have a construct for introducing a local macro definition. For
example, the programmer might write

(with-macro (push frob stack)
'(set! ,stack (cons ,frob ,stack))

to introduce a local push macro. For convenience, the variables f rob andstack will be bound to syntactic closures of the argument expressions. The

syntactic environment in which the arguments are closed will be the one
that was in force where the push-expression occurred. (This is not a very
general interface, but it will serve to illustrate the environment issues.)

After the replacement expression has been computed, it should be closed
in some relevant syntactic environment. We could decree that some known
syntactic environment, such as the scheme-syntactic-environment, is al-
ways used. Thus in the example above, the standard definitions of set! and
cons would be obtained. But a convincing case can be made that

(let ((adjoin cons))
(with-macro (push frob stack)

'(set! ,stack (adjoin ,frob ,stack))

(let ((adjoin +))
(push (adjoin n m) sum-stack))))

should beb ive the same as

(set! sum-st.ck (cons (+ n m) sum-stack)).

That is, the replacement zhould be closed in the syntactic environment that
was in force where the with-macro-expression occurred. The definition of
with-macro given in the appendix works this way.

10
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Alternatively, the replacement could be closed in the syntactic environ-
ment that is in effect inside the body of the with-macro expression. This
would permit the definition of recursive macros that expand into expressions
that employ the same macro again. An appropriate name for this variant of
with-macro would be vith-macro-rec, since it bears the same relation to
with-macro as letrec does to let.

(with-macro-rec (or exp . other-exps)

(if (null? other-exps)
exp
'(let ((temp ,exp))

(if temp
temp

(or ,Cother-exps))))

One often needs to introduce several macros simultaneously, especially
if they are mutually recursive. With-macro and with-macro-rec would
therefore be more useful if they followed the syntax of let and letrec.

The expression that computes the replacement raises a different environ-
* ment issue: where to obtain the syntactic and value environments in which

to evaluate it. Using the syntactic environment from where the with-macro
occurred will not work, because that environment maps identifiers to vari-
ables that will not exist until run time. The implementation in the appendix
simply uses fixed syntactic and value environments. Thus, the bodies of
macros are always written in standard Scheme, even if the program itself is
written in a different language.

4.5 Pattern matching

With-macro's limited pattern matching ability would also have to be reme-
died in any real implementation. As it stands, it assumes that the expression
to be expanded always consists of the keyword followed by a sequence of

subexpressions, and it assumes that it is correct to close the subexpressions
in the environment in which the expression occurred.

A more general solution would have the following capabilities:

* Checking that the input expression is properly formed.

% Selecting between alternatives based on the form of the input expres-
sion.

.,a. 11
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" Destructuring the input expression, to arbitrary depth, and binding "variables to its component parts. .

" Declaring which components are expressions to be syntactically closed, .%.

and in each case, what names are to be left free.

At the same time, this flexibility must be provided in such a way that the

most common cases are concise.

The usual approach is to design a pattern matching language. Our expe-
rience is that this is as diffcult as most other kinds of language design, The

pattern language may resemble Lisp, e.g. by employing constructors such
as cons to indicate destructuring, but this call lead to confusion because ,

not all pattern operations have obvious analogues in Lisp, and not all Lisp %.
constructs make sense in patterns. Alter nati vely, the pattern language may ,.
resemble Lisp data structures, e.g. by using a pair to match a pair (as in %. ,

[2] and [4]), but this ieaves no room to express additional pattern opera-"'.
tions without introducing special keywords. Such languages quickly become
verbose and baroque.-"

We regard this area as suitable for future research and do not choose to .
address it at this time. .

•- V.'

5 Previous work

Many users of conventional macro systems are sensitive to scoping problems..'
Several techniques to abeliorate these situations have been discovered and
rediscovered over the years: p

" One way to avoid capture problem, (like or's problem with tmp) is
to use names so obscure that the macro's client is unlikely to discover
themn accidentally.

T An improvement oi the use of obscure names is to use a gensym utility

that generates anl unlimited supply of names that are guaranteed not
to conflict with other names.

a Another way to come up with obscure names is to directly anipu-
late the mapping fronm character stings to nanLes. aonoll Lisp's
packages[4] can be used in this manner: whet a macro is defined in
one package, and a client of the macro resides in a different package,
then a given character string in the acro definition is effectively a
different naie from the sabe string occurring in the client.

addrss i at his ime
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* In [5], Steele advocates the use of thunks to avoid capture p)roblems.
Ile would define or as follows:

(define-macro (or exp-i exp-2)

'(let ((temp ,exp-1)
(thunk (lambda () ,exp-2)))

(if temp temp (thunk))))

* Some Lisp dialects provide a mechanism that enables the macro writer
to insert absoluie references into the replacement expression. Instead
of

'(cons ,exp-i ,exp-2)

the macro writer could write

'(,(make-absolute-reference-to
'cons

standard-scheme-environment)
,exp-1

,exp-2).

Each of these solutions is incomplete. Clients may unwittingly stum-
ble upon obscure names; packages are not integrated with lexical scopilig;
thunks can't deal with scoping of keywords; absolute references are clumsy

* and error prone.
Some Scheme dialects provide interfaces that are similar in spirit to syn-

tactic closures and environments. Syntax tables in MIT Scheme and T con-
tain bindings for keywords, but they do not contain auything corresponding
to our identifier-to-variable mapping.

Syntactic environments also bear a strong resemblance to the expansion
functions of Dybvig et al.[1] Their expanders follow the same general protocol
for processing expressions, and can be used to solve some scoping problems,
but they lack the generality provided by syntactic closures.

MIT Scheme also has parsed expressions (called S-code) that resemble
our syntactic closures in that they do not contain free keyword references.

0 Syntactic closures may additionally leave some keywords free to be deter-
' mined later.

It has been suggested that if macros were always written in a restricted
pattern language, then the implementor of the pattern language could solve
scoping problems once and for all. While we believe that it is good to have

13



a convenient notation for defining the most common kinds of macros, we
believe that there are occasions in which nothing less than the full power of

Lisp will suffice.
"lhygienic macro expansion"[2] is the only other complete solution to

the macro scoping problems of which we are aware. Hygienic expansion
works by "painting" the entire input expression with some distinctive color

before passing it to the expander. Then the returned replacement expression
is examined to find those parts that originated from the input expression;
these can be identified by their color. The names in the unpainted text are
protected from capture by the painted text, and vice versa.

The painting is done without any understanding of the syntax of the
input expression: paint is applied to expressions, quoted constants, cond-
clauses, and the bound variable lists from lambda-expressions. This strikes
us as being very undisciplined. We prefer a scheme that is everywhere
sensitive to the underlying syntactic and semantic structure of the language.

In addition, it is diflicult to comprehend how hygienic expansion operates
and why it is correct. We feel that syntactic closures solve scoping problems
in a natural, straightforward way.

6 Conclusions

The iml)lementation given in the appendix was written for expository pur-
poses. To gain practical experience with syntactic closures, we have also
written a complete Scheme system in which macros (including most of

Scheme's built-in special forms) are defined using the tools described here.
The additional control provided by syntactic closures proved to be quite ben-
eficial in practice. Syntactic closures allowed us to solve scoping problems
that have plagued Lisp implementations for years.

The following areas deserve further exploration:
Some versions of Scheme allow one to write definitions (define forms)

at the beginning of the body of various constructs as a more convenient way
of writing a letrec. Definitions syntactically resemble expressions, which
suggests that macros should be able to expand into them. It also suggests
that a define-macro form should be permitted in the same contexts. Al-
though these extensions are intuitively appealing, it is difficult to give them
a precise meaning.

As noted above, expressive language constructs for defining macros re-
main to be designed, including possibly ar perspicuous pattern matching

14
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language.
One might want to do things to syntactic closures other than just insert-

ing them into expressions. For example, the Common Lisp setf macro[4]
needs to examine an expression that accesses a value in order to determine
how to transform it into a corresponding assignment expression. Other
macros may need to do more sophisticated kinds of analysis.

We would also like to investigate the application of syntactic closures
and environments to problems of programming in the large. When a system
is composed of several modules, each consisting of a number of procedure,
variable, and macro definitions, it becomes necessary to have a language for
describing the interactions between the modules. We believe that syntactic
environments must play an important role in any such language.

Syntactic closures are a powerful and convenient tool for solving macro
scoping problems. As experienced macrologists, we have found them to be
a pleasure to use. They enable one to write correct macros with ease and
confidence.
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Appendix: an implementation

The implementation consists of two parts: a compiler, and the definition"

of scheme-macrology. The compiler is extremely siml)Ie; it generates an
expression written in a subset of Scheme. However, the reader should not
be misled by this into thinking that we are proposing to standardize a macro
expansion procedure; in a practical system the compiler might well generate
PDP-1O instructions.

The compiler consists of the implementations for syntactic environments,
syntactic closures, and the core syntactic environment. (

The implementation of the Scheme inacrology is self-contained; it does
not depend on any details of the comlpiler. It illustrates how many standard
macros can be written using syntactic closures and includes an implemen-
tation of a with-macro keyword.

Time user visible entry points are: V

extend-syntactic-environment A
make-syntactic-closure
core-syntactic-environment

scheme-macrology
scheme-syntactic-environment

all of which are described above.

Utilities:

(define unique-symbol-counter 0)

(define (make-unique-symbol symbol)
(set! unique-symbol-counter (+ 1 unique-symbol-counter))

(string->symbol
(string-append (symbol->string symbol)

(number->string unique-symbol-counter
'(heur)))))

16



o 1

; Simple little run-time system:

; Object code is represented as ordinary Scheme expressions,
; except that combinations are introduced by a CALL
; "keyword". This makes the run-time system extremely simple.

(define (execute code)
(eval code user-initial-environment))

(define (call proc . args)

(apply proc args))

The compiler:

A syntactic environment is implemented as a procedure that
is applied to a second syntactic environment and an
expression. It is expected to return the compiled form of
the expression. The second syntactic environment is used

; to compile the subexpressions of the expression.

(define (compile syntactic-env exp)
(syntactic-env syntactic-env exp))

(define (compile-list syntactic-env exps) ,
(map (lambda (exp)

(syntactic-env syntactic-env exp))
exps))

Syntactic environments:

(define (extend-syntactic-environment

outer-syntactic-env keyword expander)
(lambda (syntactic-env exp)
(if (and (pair? exp)

(eq? (car exp) keyword))
(compile null-syntactic-environment

(expander syntactic-env exp))
(outer-syntactic-env syntactic-env exp))))

17o
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ADD-IDENTIFIER-LIST is used internally by LAMBDA to

introduce new identifiers into the syntactic environment.
(define (add-identifier-list syntactic-env identifiers)

(if (null? identifiers)
syntactic-env
(add-identifier (add-identifier-list syntactic-env

(cdr identifiers))

(car identifiers))))

(define (add-identifier outer-syntactic-env identifier)
(let ((variable (make-unique-symbol identifier)))
(lambda (syntactic-env exp)

(if (eq? exp identifier)
variable

(outer-syntactic-env syntactic-env exp)))))

FILTER-SYNTACTIC-ENV creates a new syntactic environment in

which a given list of names take their meaning from one

syntactic environment, while all other names take their

meaning from another.

(define (filter-syntactic-env .
names names-syntactic-env else-syntactic-env)

(lambda (syntactic-env exp)
((if (memq (if (pair? exp) (car exp) exp) names)

names-syntactic-env
else-syntactic-env)

syntactic-env
exp)))

X
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The null syntactic environment is used to ensure that the

expressions returned by expanders are syntactic thunks
(i.e. have no free names).

(define (null-syntactic-environment syntactic-env exp)

(if (syntactic-closure? exp)
(compile-syntactic-closure syntactic-env exp)
(error "Unclosed expression: -S" exp)))

The core syntactic environment is actually a part of the

; compiler, since it determines how code is to be generated
; for the primitive constructs.

(define (core-syntactic-environment syntactic-env exp)
((cond ((syntactic-closure? exp) compile-syntactic-closure)

((symbol? exp) compile-free-variable)
((not (pair? exp)) compile-constant)
(else (case (car exp)

((quote) compile-constant)

((if begin set!) compile-simple)
((lambda) compile-lambda)
(else compile-combination))))

syntactic-env
exp))

(define (compile-constant syntactic-env exp)

exp)

(define (compile-free-variable syntactic-env exp)
exp)

(define (compile-combination syntactic-env exp)

'(call ,@(compile-list syntactic-env exp)))

(define (compile-simple syntactic-env exp)

'(,(car exp) ,(compile-list syntactic-env (cdr exp))))

(define (compile-lambda syntactic-env exp)

(let ((syntactic-env (add-identifier-list syntactic-env
(cadr exp))))

'(lambda ,(compile-list syntactic-env (cadr exp))

,C(compile-list syntactic-env (cddr exp)))))
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Syntactic closures:

A syntactic closure is implemented as a procedure tnat is
marked so that it can be recognized when it is found in an

expression. The procedure is applied to the syntactic
environment in which the closure's free names will be
resolved. The procedure returns the compiled form of the
expression.

(define (make-syntactic-closure syntactic-env free-names exp)
(vector 'syntactic-closure

(lambda (free-names-syntactic-env)
(compile (filter-syntactic-env

free-names
free-names-syntactic-env
syntactic-env)

exp))))

(define (make-syntactic-closure-list
syntactic-env free-names exps)

(map (lambda (exp) A6t
(make-syntactic-closure syntactic-env

free-names

exp))
exps))

(define (syntactic-closure? x)
(and (vector? x)

( 2 (vector-length x))
(eq? 'syntactic-closure (vector-ref x 0))))

(define (compile-syntactic-closure

syntactic-env syntactic-closure)
((vector-ref syntactic-closure 1) syntactic-env))

Here ends the compiler.

20



;The Scheme Macrology:

;The scheme macrology assumes that it is applied to a
;syntactic environment in which the names LAMBDA, QUOTE, IF,
;BEGIN, SET!, MEMV, and MAKE-PROMISE are defined.

(define (scheme-macrology base-syntactic-env)

(define (let-expander syntactic-env exp)
(let ((dentifiers (map car (cadr exp))))
(make-syntactic-closure final-syntactic-env '0)

'((lambda ,identifiers

,ffl(make-syntactic-closure-list

syntactic-env identifiers
(cddr exp)))

,Qmake-syntactic-closure-list

syntactic-env '(0
(map cadr (cadr exp)))))))

(define (delay-expander syntactic-env exp)
(let ((delayed (make-syntactic-closure syntactic-env '0)

(cadr exp))))
.1 (make-syntactic-closure final-syntactic-env '0)

.4 '(make-promise (lambda 0) delayed)))))

21



(define (and-expander syntactic-env exp)
(let ((operands (make-syntactic-closure-list

syntactic-env '()
(cdr exp))))

(cond ((null? operands)
(make-syntactic-closure final-syntactic-env '()

I#t)) ,

((null? (cdr operands)) (car operands))
(else
(make-syntactic-closure final-syntactic-env '()

'(let ((temp ,(car operands)))
(if temp

(and ,C(cdr operands))
temp)))))))

(define (or-expander syntactic-env exp)
(let ((operands (make-syntactic-closure-list

syntactic-env '()
(cdr exp)))) r

(cond ((null? operands)
(make-syntactic-closure final-syntactic-env ')

I#f))

((null? (cdr operands)) (car operands))
(else
(make-syntactic-closure final-syntactic-env '()

'(let ((temp ,(car operands)))
(if temp

temp
(or ,C(cdr operands)))))))))

22
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(define (cond-expander syntactic-env exp)
(make-syntactic-closure final-syntactic-env '()

(process-cond-clauses syntactic-env (cdr exp)

(define (process-cond-clauses

syntactic-env clauses)
(let ((ody (make-syntactic-closure-list

syntactic-env '0)
(cdar clauses)

(cond ((not (null? (cdr clauses))
* (let ((test (make-syntactic-closure

syntactic-env '(0

(caar clauses)))
(rest (process-cond-clauses

syntactic-env

(cdr clauses))))
(if (null? body)

'(or ,test ,rest)
'(if *test

(begin O~body)
,rest))))

((eq? (caar clauses) 'else) '(begin Q~body))

(else
(let ((test (make-syntactic-closure

syntactic-env 'C)
(caar clauses))))

(if (null? body)
test

* '~(if ,test (begin QCbody))MM))

23
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(define (case-expander syntactic-env exp)
(make-syntactic-closure final-syntactic-env '()

'(let ((temp ,(make-syntactic-closure syntactic-env '()
(cadr exp))))

,(process-case-clauses syntactic-env (cddr exp)))))

(define (process-case-clauses syntactic-env clauses)

(let ((ddta (caar clauses))
(body (make-syntactic-closure-list

syntactic-env '()

(cdar clauses))))

(cond ((not (null? (cdr clauses)))

(let ((rest (process-case-clauses
syntactic-env
(cdr clauses))))

'(if (memv temp ',data)

(begin ,Qbody)

,rest)))

((eq? data 'else) '(begin ,Qbody))
(else '(if (memv temp ',data)

(begin ,@body))))))
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(define (with-macro-expander with-macro-syntactic-env exp)

(transformer (execute
(compile
scheme-syntactic-environment
'(lambda ,(cdadr exp)

,(caddr exp))

(expander (lambda (syntactic-env exp)
(make-syntactic-closure
with-macro-syntactic-env '()

N: (apply transformer
(make-syntactic-closure-list
syntactic-env '(0
(cdr exp)))))))

(make-syntactic-&?losure final-syntactic-env '()

S '(begin
C (make-syntactic-closure-list

(extend-syntactic-environment

with-macro-syntactic-env
keyword
expander)

, 0

(cdddr exp)))

'25
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(define (with-macro-rec-expander
with-macro-syntactic-env exp)

(let* ((keyword (caadr exp))
(transformer (execute

(compile
scheme-syntactic- environment

'(lambda ,(cdadr exp)
,(caddr exp)))))

(extended-syntactic-env #f)

(expander (lambda (syntactic-env exp)
(make-syntactic-closure
extended-syntactic-env '0)

(apply transformer
(make-syntactic-closure-list

syntactic-env '()
(cdr exp)))))))

(set! extended-syntactic-env
(extend-syntactic-environment
with-macro-syntactic-env

- keyword
expander))

(make-syntactic-closure final-syntactic-env 10)
'(begin

,'Q(make-syntactic-closure-list
extended-syntact 'ic-env '(0
(cdddr exp))))))
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(define final-syntactic-env #f)

A careful reading of the Scheme report reveals that you
can't put this DO inside the previous DEFINE.

(do ((syntactic-env base-syntactic-env

(extend-syntactic-environment
syntactic-env
(caar pairs)

(cadar pairs)))
(pairs (list (list 'delay delay-expander)

(list 'or or-expander)
(list 'and and-expander)

(list 'let let-expander)
(list 'cond cond-expander)
(list 'case case-expander)
(list 'with-macro

with-macro-expander)
(list 'with-macro-rec

with-macro-rec-expander)

(cdr pairs)))
((null? pairs)

(set! final-syntactic-env syntactic-env)))

final-syntactic-env

) ;end (define (scheme-macrology ...) ... )

(define scheme-syntactic-environment
(scheme-macrology core-syntactic-environment))
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